通过精心调整激光参数并辅以其他工艺,激光技术能实现对玻璃材料的精细加工,从而大幅提升玻璃生产的效率与规模。这不仅有助于充分发挥玻璃材料的卓越性能,还能进一步拓宽其应用范围。
玻璃材料凭借其出色的化学稳定性、热力学特性、透光性、耐腐蚀性、隔热性、绝缘性、生物相容性以及光滑的表面,在多个领域得到了广泛应用。在日常生活中,玻璃已成为不可或缺的建筑材料和装饰材料,无论是高楼大厦还是交通工具,都离不开它的身影。随着现代化生活品质的提升,玻璃更是融入了城市滨水区域的人文景观设计之中。例如,为了确保江河航道的安全,挡水建筑物(如防洪墙)逐渐采用玻璃材质建造,这种通透式的玻璃防洪墙不仅与航道滨水区域的空间景观和谐相融,更为城市居民提供了一个宜人的休憩和亲水环境。此外,在工业生产中,玻璃材料也发挥着至关重要的作用。由于它能够抵御大多数无机酸、有机酸的腐蚀,因此常被用于制造接触酸、碱的容器和元件。其光滑洁净的表面更是赢得了科技领域的青睐,诸如太阳能光伏发电系统的组件光伏玻璃、晶体硅电池的玻璃盖板等,都离不开玻璃材料的支持。甚至在普通制造业中,金属部件上熔覆的玻璃材料也能有效增强机械部件的耐腐蚀性,从而延长其使用寿命。
激光加工技术
激光因其高相干性,能够通过光学系统被会聚成极小的光斑,且其亮度极高,使得光功率密度在会聚光斑内达到极高水平。这一特性允许激光在瞬间加热并熔化多数材料,甚至使其汽化,从而在被照射的材料上形成孔洞,实现高效打孔。通过移动激光束,我们可以轻松地将材料切割开来,实现切割加工。当激光照射斑点落在两块材料的交接处时,熔化的部分在冷却后将这两块材料“焊接”在一起,从而完成焊接加工。激光加工技术以其独特的优势,如高精度、高效率,以及对传统钻头、刀具、焊枪等工具的替代性,正逐渐成为材料加工领域的新宠。
玻璃加工技术
玻璃作为一种脆性材料,在采用传统加工方式时,常常面临破裂、切口碎屑、切缝不平直以及表面压溃层等问题。即便是应用激光加工技术,也可能会因为激光照射区域与非照射区域间的温差引发的热应力,而导致玻璃出现裂纹或断裂。然而,通过精心选择激光参数并辅以适当工艺,这些问题均可得到有效解决,从而获得切缝平直、无碎屑且无显微裂纹的优质玻璃产品。
在激光参数的选择上,主要包括激光脉冲宽度、激光波长和激光功率。对于加工用的激光,它可以是以连续波或长脉冲形式存在,也可以是短脉冲激光,特别是飞秒激光。在连续波或长脉冲激光的作用下,玻璃会经历一个复杂的热加工过程,容易因热应力而碎裂。但短脉冲激光,尤其是飞秒激光,其脉冲持续时间极短,远小于大多数物理化学过程的特征时间。因此,在短脉冲激光的作用下,激光与物质的相互作用机制将发生根本变化,使得打孔、切割等加工过程以非加热方式完成,即所谓的“冷加工”。这种方式有效地避免了由热应力引发的玻璃裂纹和碎裂问题。
激光波长。玻璃对不同波长的激光吸收率各异,从而影响加工质量。在使用连续波或长脉冲激光时,材料的线性光学吸收过程占据主导地位,这包括表面吸收和体吸收两种形式。对于波长超过5微米的激光,如CO2激光(波长为6微米),其大部分能量被玻璃表面吸收,导致裂纹从表面开始扩展,难以控制,进而影响切口质量和切割厚度,且难以切割多层玻璃。相比之下,波长较短的激光,例如YAG激光(波长为1064纳米),其体吸收率较高,能提供更高的切割质量,切口平直、无碎屑和显微裂纹,且适用于多层玻璃、夹层玻璃和玻璃管的切割。
激光功率。当其他加工参数(如激光光斑大小、加工速度等)确定后,存在一个最佳的激光功率,可避免玻璃工件出现裂纹。
辅助工艺。这包括预处理和新工艺等。预处理如预热和预置光学吸收层等,可降低裂纹等缺陷的出现概率。预热可减少加工时的温度梯度和热应力,既可使用外加热源,也可用激光束照射。在飞秒激光加工时,由于激光束作用时间极短,产生的热量来不及在材料内积累,通常不会产生热应力,因此可不进行预热。
另外一个常用的预处理方法是预置光学吸收层。在连续波激光或长脉冲激光加工时,我们可以将二氧化铈粉末与水混合,涂抹在玻璃材料表面,待其晾干后形成一层薄的光学吸收层。这一层能有效抑制玻璃开裂,同时提升加工速度而不影响质量。此法已在硼硅玻璃和石英玻璃上成功加工出深径比超过12的微孔。此外,在两块玻璃的交接处涂上钛薄膜光学吸收层,进行激光焊接,效果亦十分理想,扫描电镜下未观察到明显损伤。
新工艺方面,双激光束加工技术的采用也显著提升了加工质量。其中一束激光作为主光束,执行主要加工任务;另一束则作为辅助光束,用于预热玻璃材料、控制温度变化速度、降低热应力强度,或改变主光束在玻璃上的光学吸收性能。这两束激光可以是不同种类,也可以是相同种类。例如,可以使用波长为780纳米的飞秒激光作为主激光束,搭配波长为1070纳米的长脉冲激光作为辅助激光束,共同进行加工。这种方式不仅避免了单一飞秒激光加工时的速度慢、易损伤的问题,还大幅提升了加工速度。实践证明,该方法能高效地加工出直径10微米、深度达133微米的高宽深比微孔,且加工速度极快,是单一飞秒激光加工速度的5000倍以上。另外,采用两束CO2激光切割玻璃材料的方法也取得了显著成效。首先用一束低功率聚焦的CO2激光在玻璃表面划线,然后用非聚焦的CO2激光沿划线扫描实现切割。此法相较于单一CO2激光切割,显著提高了切面的光洁度。
在传统的激光加工中,通常采用的是由上至下的加工方式。然而,当我们将这种加工方式转变为由下至上时,即通过将激光透过玻璃材料并聚焦在其下表面,从底部开始往上进行加工,我们会发现激光脉冲宽度区间不再存在所谓的“死亡谷”。这意味着,在纳秒级脉冲宽度的范围内,随着脉宽的缩短,激光对玻璃材料的去除率会逐渐降低。但这种改变带来了显著的优势,不仅提高了加工质量,例如实现了小孔的零锥度打孔,同时还将玻璃的崩边尺寸控制在50微米以下。
激光加工玻璃材料技术在多个领域都展现出了显著的应用优势,并取得了令人瞩目的成果。以下将通过几个具体案例来进一步阐述其应用价值。
首先,在液晶显示玻璃基片的制造过程中,激光加工技术发挥了至关重要的作用。液晶显示玻璃基片,作为构成显示面板的核心元件,其质量直接关系到液晶电视、液晶显示器等产品的整体性能。然而,传统的加工方法往往难以避免断裂、边缘碎屑和微裂纹等缺陷,从而影响了产品的加工质量和成品率。激光加工技术的引入,有效解决了这些问题,其高精度(小于20微米)和高速度的切割能力,以及无毛刺和裂纹的切口质量,使得激光加工成为光电显示玻璃基片制造中不可或缺的技术。
此外,在石英玻璃微孔的加工方面,激光加工技术同样展现出了卓越的性能。微孔加工是微器件制造中的关键工序,特别是在微流体器件制造和电子封装等领域,对微孔的尺寸和质量有着极为严格的要求。传统加工方法往往难以满足这些需求,而激光加工技术,特别是飞秒激光技术的应用,则能够轻松应对这些挑战。它能够加工出孔径小至72微米、深度达到1824微米、深径比高达3:1的优质微孔,为微器件的精密制造提供了强有力的技术支持。
利用激光加工的石英微孔剖面形貌
在太阳能光伏制造业中,光伏玻璃是不可或缺的组件,它主要包括面板玻璃和背板玻璃。为了提升组件的防火、防水等级,并延长其使用寿命,背板玻璃通常采用玻璃材料替代传统的PVDF薄膜。然而,背板玻璃制作过程中的小孔加工工序,尤其是异形孔的加工,一直是一个技术难题。激光加工玻璃材料技术的引入,完美地解决了这一问题。它不仅提供了出色的加工质量,包括高精度、稳定性以及光滑的孔壁,还能轻松地加工出各种异形孔,且加工速度极快。更为重要的是,该技术无需进行冲洗、打磨或抛光等二次加工,从而显著降低了制造成本。
此外,激光加工技术在金属管道表面制备玻璃涂层方面也展现了其独特优势。管道作为重要的运输方式,承担着能源、热力及物料的输送任务,但其金属材质容易受到腐蚀的影响。为了解决这一问题,在金属材料表面制备玻璃涂层成为了一种有效的手段。通过高能激光束的作用,预置或同步送入的玻璃材料粉末与基体材料表面同时熔化,进而形成一层耐磨、耐腐蚀、耐热且抗氧化的玻璃熔化物质薄层。这一技术的运用,不仅增强了基体材料的耐久性,还进一步拓展了金属管道在工业中的应用范围。
再来看β光源玻璃管的封接技术。这一技术同样得益于激光加工的高精度和高效率特性。通过激光束的精确控制,能够实现对玻璃管的高质量封接,确保β光源玻璃管在性能上的稳定性和可靠性。
β光源,一种自发光光源,凭借其独特的发光机制在众多领域发挥着不可或缺的作用。它利用β粒子激发荧光物质发光,无需外加电源,因此特别适用于难以铺设电路的环境,如抗灾抢险现场、油田、矿山的安全区标识和照明,以及水下救援等。然而,制造β光源的过程中,玻璃管的封接技术一直是个难题。传统的火焰热熔封接方法难以精确控制热量,可能导致封口处受热不均,进而影响玻璃管的密封性和内部材料的性能,最终降低β光源的发光效率和使用寿命。
相比之下,激光加工玻璃材料技术为解决这一问题提供了理想的方案。其封口光滑、密封性好,且在封接过程中对管内材料性能的影响极小。这一技术的运用,不仅确保了β光源的高质量制造,还为其在各种复杂环境下的应用提供了有力支持。
此外,激光加工技术在石英摆片的加工方面也展现了卓越的性能。石英摆片是石英挠性加速度计的核心部件,其精度和表面质量直接决定着加速度计的测量性能。传统加工方法往往难以达到石英摆片的高精度和高表面质量要求,而激光加工技术却能轻松应对这一挑战。它不仅能保证石英摆片的平面度、平行度等关键尺寸精度,还能确保其表面质量,从而为石英挠性加速度计的高精度测量提供了有力保障。
激光加工玻璃材料技术不仅封接效果好,还能在玻璃材料表面精细地制造出各种微结构,如微小凸起或下凹结构等,且加工速度非常快。例如,在太阳能设备的盖板玻璃上制作这样的微结构,能够有效减少其对太阳光的反射损失,进而提升太阳能电池的光电转换效率。此外,在玻璃光学元件的表面进行类似加工,能显著提高光学元件成像的均匀性和清晰度,从而大幅提升仪器的整体成像质量。更进一步的是,激光加工还能在玻璃表面制造出微通道,实现微流体的精确注入和流畅流动。这一技术不仅在分析化学、环境监测等领域具有重要应用价值,还能模拟生物毛细血管中的血液或药物流动,为相关科学研究提供有力支持。